135 research outputs found

    Single crystalline thin films as a novel class of electrocatalysts

    No full text

    Single crystalline thin films as a novel class of electrocatalysts

    No full text
    The ubiquitous use of single crystal metal electrodes has garnered invaluable insight into the relationship between surface atomic structure and functional electrochemical properties. However, the sensitivity of their electrochemical response to surface orientation and the amount of precious metal required can limit their use. We present here a generally applicable procedure for producing thin metal films with a large proportion of atomically flat (111) terraces without the use of an epitaxial template. Thermal annealing in a controlled atmosphere induces long-range ordering of magnetron sputtered thin metal films deposited on an amorphous substrate. The ordering transition in these thin metal films yields characteristic (111) electrochemical signatures with minimal amount of material and provides an adequate replacement for oriented bulk single crystals. This procedure can be generalized towards a novel class of practical multimetallic thin film based electrocatalysts with tunable near-surface compositional profile and morphology. Annealing of atomically corrugated sputtered thin film Pt-alloy catalysts yields an atomically smooth structure with highly crystalline, (111)-like ordered and Pt segregated surface that displays superior functional properties, bridging the gap between extended/bulk surfaces and nanoscale systems

    Multimetallic Core/Interlayer/Shell Nanostructures as Advanced Electrocatalysts

    No full text
    The fine balance between activity and durability is crucial for the development of high performance electrocatalysts. The importance of atomic structure and compositional gradients is a guiding principle in exploiting the knowledge from well-defined materials in the design of novel class of core–shell electrocatalysts comprising Ni core, Au interlayer, and PtNi shell (Ni@Au@PtNi). This multimetallic system is found to have the optimal balance of activity and durability due to the synergy between the stabilizing effect of subsurface Au and modified electronic structure of surface Pt through interaction with subsurface Ni atoms. The electrocatalysts with Ni@Au@PtNi core-interlayer-shell structure exhibit high intrinsic and mass activities as well as superior durability for the oxygen reduction reaction with less than 10% activity loss after 10 000 potential cycles between 0.6 and 1.1 V vs the reversible hydrogen electrode

    Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts

    No full text
    Production of affordable, clean hydrogen relies on efficient oxygen evolution, but improving catalytic performance for the reaction in acidic media is challenging. Here the authors show how tuning the nanoporous morphology of iridium/iridium oxide leads to an improvement in activity/stability, compared with conventional iridium-based oxides
    corecore